Type: \(\displaystyle A^{1}_3+A^{1}_2+A^{1}_1\) (Dynkin type computed to be: \(\displaystyle A^{1}_3+A^{1}_2+A^{1}_1\))
Simple basis: 6 vectors: (1, 1, 1, 1, 1, 1, 1, 1), (0, 0, 0, 0, 0, 0, 0, -1), (0, 0, 0, 0, 0, 0, -1, 0), (0, 1, 1, 1, 1, 0, 0, 0), (0, 0, 0, 0, -1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: 0
simple basis centralizer: 0 vectors:
Number of k-submodules of g: 11
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{6}}+V_{\omega_{5}+\omega_{6}}+V_{\omega_{4}+\omega_{6}}+V_{\omega_{3}+\omega_{6}}+V_{\omega_{1}+\omega_{6}}+V_{\omega_{4}+\omega_{5}}+V_{\omega_{1}+\omega_{5}}+V_{\omega_{3}+\omega_{4}}+V_{\omega_{1}+\omega_{3}}+2V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 13(0, 0, -1, 0, 0, 0, 0, 0)(0, 0, 1, 0, 0, 0, 0, 0)g_{3}
h_{3}
g_{-3}
\varepsilon_{3}-\varepsilon_{4}
0
-\varepsilon_{3}+\varepsilon_{4}
Module 26(0, 0, -1, -1, 0, 0, 0, 0)(0, 1, 1, 0, 0, 0, 0, 0)g_{10}
g_{-12}
g_{2}
g_{-4}
g_{-18}
g_{-11}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{4}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{5}
Module 36(0, -1, -1, 0, 0, 0, 0, 0)(0, 0, 1, 1, 0, 0, 0, 0)g_{11}
g_{18}
g_{4}
g_{-2}
g_{12}
g_{-10}
\varepsilon_{3}-\varepsilon_{5}
\varepsilon_{3}-\varepsilon_{6}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{4}
Module 48(0, 0, -1, -1, -1, -1, 0, 0)(1, 1, 1, 0, 0, 0, 0, 0)g_{16}
g_{-30}
g_{9}
g_{-25}
g_{-33}
g_{-19}
g_{-29}
g_{-24}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{9}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{4}+\varepsilon_{8}
-\varepsilon_{3}+\varepsilon_{9}
-\varepsilon_{4}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{8}
-\varepsilon_{3}+\varepsilon_{7}
Module 58(0, -1, -1, -1, 0, 0, 0, 0)(0, 1, 1, 1, 0, 0, 0, 0)g_{17}
g_{-5}
g_{23}
-h_{5}
h_{5}+h_{4}+h_{3}+h_{2}
g_{-23}
g_{5}
g_{-17}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{5}+\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
0
0
-\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{5}-\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{5}
Module 612(0, -1, -1, -1, -1, -1, 0, 0)(1, 1, 1, 1, 0, 0, 0, 0)g_{22}
g_{-26}
g_{27}
g_{-20}
g_{-21}
g_{1}
g_{-13}
g_{-14}
g_{-35}
g_{-6}
g_{-32}
g_{-28}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{5}+\varepsilon_{9}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{5}+\varepsilon_{8}
-\varepsilon_{6}+\varepsilon_{9}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{5}+\varepsilon_{7}
-\varepsilon_{6}+\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{9}
-\varepsilon_{6}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{7}
Module 78(-1, -1, -1, 0, 0, 0, 0, 0)(0, 0, 1, 1, 1, 1, 0, 0)g_{24}
g_{29}
g_{19}
g_{33}
g_{25}
g_{-9}
g_{30}
g_{-16}
\varepsilon_{3}-\varepsilon_{7}
\varepsilon_{3}-\varepsilon_{8}
\varepsilon_{4}-\varepsilon_{7}
\varepsilon_{3}-\varepsilon_{9}
\varepsilon_{4}-\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{4}-\varepsilon_{9}
-\varepsilon_{1}+\varepsilon_{4}
Module 812(-1, -1, -1, -1, 0, 0, 0, 0)(0, 1, 1, 1, 1, 1, 0, 0)g_{28}
g_{32}
g_{6}
g_{35}
g_{14}
g_{13}
g_{-1}
g_{21}
g_{20}
g_{-27}
g_{26}
g_{-22}
\varepsilon_{2}-\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{8}
\varepsilon_{6}-\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{9}
\varepsilon_{6}-\varepsilon_{8}
\varepsilon_{5}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{2}
\varepsilon_{6}-\varepsilon_{9}
\varepsilon_{5}-\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{6}
\varepsilon_{5}-\varepsilon_{9}
-\varepsilon_{1}+\varepsilon_{5}
Module 915(-1, -1, -1, -1, -1, -1, 0, 0)(1, 1, 1, 1, 1, 1, 0, 0)g_{31}
g_{-15}
g_{34}
g_{-7}
g_{-8}
g_{36}
-h_{7}
-h_{8}
h_{8}+h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1}
g_{-36}
g_{8}
g_{7}
g_{-34}
g_{15}
g_{-31}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{7}+\varepsilon_{9}
\varepsilon_{1}-\varepsilon_{8}
-\varepsilon_{7}+\varepsilon_{8}
-\varepsilon_{8}+\varepsilon_{9}
\varepsilon_{1}-\varepsilon_{9}
0
0
0
-\varepsilon_{1}+\varepsilon_{9}
\varepsilon_{8}-\varepsilon_{9}
\varepsilon_{7}-\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{8}
\varepsilon_{7}-\varepsilon_{9}
-\varepsilon_{1}+\varepsilon_{7}
Module 101(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{5}+2h_{4}+1/2h_{3}-h_{2}0
Module 111(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{8}+2h_{7}+3h_{6}-3h_{4}-1/2h_{3}+2h_{2}-h_{1}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 9
Heirs rejected due to not being maximally dominant: 0
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 0
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_3+A^{1}_2
Potential Dynkin type extensions: A^{1}_3+2A^{1}_2, A^{1}_3+A^{1}_2+2A^{1}_1,